S-Nitrosoglutathione Stabilizes Mature, Cell Surface CFTR through Aactivator of the Hsp90 ATPase
نویسندگان
چکیده
منابع مشابه
Benzbromarone Stabilizes ΔF508 CFTR at the Cell Surface
Deletion of Phe508 from the first nucleotide-binding domain of the CFTR chloride channel causes cystic fibrosis because it inhibits protein folding. Indirect approaches such as incubation at low temperatures can partially rescue ΔF508 CFTR, but the protein is unstable at the cell surface. Here, we show that direct binding of benzbromarone to the transmembrane domains promoted maturation and sta...
متن کاملAugmentation of CFTR maturation by S-nitrosoglutathione reductase.
S-nitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrat...
متن کاملPlatelet cell-surface protein disulphide-isomerase mediated S-nitrosoglutathione consumption.
S-nitrosothiols (RSNOs) regulate several aspects of platelet physiology including inhibition of activation, adhesion and aggregation. PDI (protein disulphide-isomerase) has recently been found to be localized to the cell surface, where it exhibits both disulphide-exchange and denitrosation activities. The disulphide-exchange activity of PDI has been linked to aspects of platelet aggregation. Th...
متن کاملThe V510D Suppressor Mutation Stabilizes ΔF508-CFTR at the Cell Surface†
Deletion of Phe508 (DeltaF508) in the first nucleotide-binding domain (NBD1) of CFTR causes cystic fibrosis. The mutation severely reduces the stability and folding of the protein by disrupting interactions between NBD1 and the second transmembrane domain (TMD2). We found that replacement of Val510 with acidic residues (but not neutral or positive residues) promoted maturation of DeltaF508-CFTR...
متن کاملCell surface thiol isomerases may explain the platelet-selective action of S-nitrosoglutathione
S-nitrosoglutathione (GSNO) at low concentration inhibits platelet aggregation without causing vasodilation, suggesting platelet-selective nitric oxide delivery. The mechanism of this selectivity is unknown, but may involve cell surface thiol isomerases, in particular protein disulphide isomerase (csPDI) (EC 5.3.4.1). We have now compared csPDI expression and activity on platelets, endothelial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Biochemistry & Physiology
سال: 2020
ISSN: 2577-4360
DOI: 10.23880/ijbp-16000180